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Distortion Estimates for Negative Schwarzian Maps

John Guckenheirmer

Stewart Johnson"

Abstract: One dimensional maps with a negative Schwarzian derivative are shown to
have area preserving properties: the distortion dis( f) f varies inversely proportional

to the vertical distance from a critical point for maps f with negative Schwarzian: maps
consisting of monotone branches mapping across an interval either have a sigma-finite

-absolutely continuous ergodic measure or a universal attractor at the ends of the interval.

I. The Schwarzian Derivative

The Schwarzian derivative was defined H.A. Schwarz in connection with the study of
conformal maps of the complex plane. The derivative has found an interesting application
n the study of one dimensional maps where the assumption of a negative Schwarzian

has been used to establish topological conjugacv between unimodal maps with identical
* kneading sequences [3]: This and other one dimensional applications arise from inherent

measure preserving properties of maps with a negative Schwarzian derivative. We attempt
in this paper to make these properties more explicit.

Definition The Schwarzian derivative S: C3(R) -- C0 (R) is defined as

(Sf)(.) - f"'(x) 3 f"(X))fix) 2 (f'(x)

The following composition rule holds:

(S fog)(x)= (Sg)(.r) + (g') 2 (Sf)(g(x))

Thus if f has a negative Schwarzian. so will all the iterates f" = f o f o ... o f. Lemmas
1A & 1B and corollary 1 are standard results.

Lemma IA For an interval I and f E C3 (I) with f' > 0

(Sf) < o (f )( is concx

kSf) =o = (f)2 is linear

(Sf) > o *=' (f') is concare
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proof 2(f') (f') T -(Sf)

end of proof

Similarly-

Lemma 1B For an interval I and f E C 3(I) withf' <0

(Sf) < 0 4=* (f')-is concave

(Sf) = 0 4 (f')-is linear

(Sf) > o 4-= (f') 2is convex

proof 2(f')4 2 
= '7 -

end of proof

function f is said to be fractional linear if it can be written in the form f(x) - ah

with ad - bc : 0; that is. if f is a hyperbola.

Corollary 1 For f E C 3 (I), S(f) = a iff f is fractional linear.

proof f is fractional linear iff -(f')- 4 = 0

end of proof

The following simple geometric observation illustrates that estimates on the distortion

and slope of functions with a negative Schwarzian derivative can be made by comparison
with fractional linear transformations.

Lemma 2 For an interval I and f, h E C3 (I) with S(f) < o, S(h)= o and any a E I. if

f(a) = h(a)

f'(a) = h'(a) > 0

f"(a) =h"(a)

f(x) < h(x) for x > a

f(x) > h(x) for x < a

proof h')-4 is linear. (f')- " is convex, and they are equal with identical derivative at

x = a. see figure 1. Hence (g')- > (h') > 0 implying 0 < f' < h' for x E I.

end of proof

2



Symmetric properties hold for decreasing functions by reflecting the xr axis. Figure 2

represents the possibilities.

Definition A hyperbola h will be said to match f at a point x = a if it satisfies the
hy,,pothesis of lemma 2 at the point x = a.

A corollary to lemma 2 is Singer's observation [9] that an increasing function of neg-
atie Shwazia canotgofrom concave to convex without having a singularity.

Corollary 2 If f E C3 (I) and S(f) < o then If'I cannot have a positive minimum.

Proof In order for Jf'I to have a positive minimum it would have to have an inflection
point. If f' > 0 it can be matched at the inflection point by a line of positive slope. By
lemma 2. f would have to be below the line to the right and above the line to the left.

hence no minimum for f'is attained. The argument for < <0 is similar.

end of proof

The following corollary implies, among other things, that a monotone function of
negative Schwarzian intersects a hyperbola at most three times.

Corollary 3 For 9g f E C'(1), f monotone increasing in I with S(g) -=o and S(f) <0o

there can be at most one point x = b such that f(b) = g(b) and f'(b) > g'(b).

Proof If there were two such points there would have to be a point xr = a between them
* .such that f (a) =g(a) and f'(a) < g'(a). If a hyperbola h matches the function f at the

point r = (L then 1i must intersect g in three places by lemma 2. But two hyperbolae can

intersect at most twice.

end of proof

The following corollary is a consequence of lemma 1.

Corollary 4 For f. h E C'(1), a, b E I with S(f) < o and S(h) o, and f1.' > 0. if
* [(a) = h'(a) and f'(b) = h'(b) then f'(r) > h'(x) for xr E (a, b).

-- proof (1,,)- is linear. f) is convex and they are equal at a and b, hence 2f) <
*-(h'r forx xE

V. end of proof

.

S. A Terse Proof of the Folklore Theorem

Definition For an interval I and f C i) the distortion dis C a) C( i) is defined

1)v

dis(f)(.r) f X
3,p i e 2 t o =

'-% %i
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For f. 9 E C'(I),the following composition rule holds for distortion:

dis(f a g)(x) = dis(f)(g(x)) + ds(g)(x)
f'(g(x))

*. -If i1 fix) then dis(f)(x) is the rate of change of log(f'(x)) with respect to q/:

-- l( . Thus estimates on dis(f) can be used to control the change in

P over a given range. Furthermore, if dis(f) is bounded and lf'I > L > 1. then by

the composition rule dis(ff) is uniformly bounded for all n. The utility of these ideas is

demonstrated in the following classic theorem first stated and proved by Adler [1]. For

further exposition of these ideas and an expanded treatment of the theorem please refer

to [2] and [4].

Folklore Theorem For an interval I. suppose f E C2 (I), f : I ,--- I and I can be written
1-1 onto

as a disjoint union of intervals.I =U JeJ "1 , with f : J ' I for each interval J E _.

If :ED < -c. L > 1 such that If'! > L and dis(f) < D then there exists a tinite erfdic

-." invariant measure for f which is absolutley continuous with respect to Lebesgue measure.

proof Let J be the collection of intervals over which ffl is monotone, hence VJ E J,,.
j 1-1 onto 1. Let t represent Lebesgue measure.

By the composition rule for distortion it follows that ds(f") < DL . For any x. y

j E r,,

In (f")'(, d (In If (t)I)dtI f f""(t) du

< DL DL

L - 1 <  L- 1

Thus for any measurable E C 1.

O(f--(E)) = (fU-"(E) r) J) < E e-i ' t(E) . C(j) = e_ (E)

Similarly.

-nfE) > L C(E)

Ja.-,j , C ( I) ( )

(E))V(E

Ther,4ore any weak limit i of ,L 7n C D f -' is non-vanishing, invariant with respect to
I f and absolutely continuous with respect to Lebesgue measure. If Q(E) > 0. then since 'T

generates. Ve > 0. 3n. 3.1 E J, such that e and hence ((f "(E)) > t
-,a() < n ecegf() >1- Crz. It

follows that f is ergodic.

end of proof

Adler's proof that. f. ji is weakly Bernoulli on J,, is given in the appendix.

* 4
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III. Estimates on Distortion

The distortion dis(f) is invariant under changes of scale in the domain and is multi-

plied by the inverse of a scaling factor in the range. In analyzing the distortion and slope of
negative Schwarzian maps. it then suffices to consider a generic monotone branch mapping
a unit interval onto itself.

- Let F be the collection of maps f which are C' , monotone, have negative Schwarzian
and map the unit interval I = [0. 1] onto itself with f(0) = 0 and f(1) = 1. Likewise. let

-C; be the collection of hyperbolae g which are monotone and map the unit interval I into
-" itself with g(0) = 0 and g(1) = 1.

We examine how the distortion and slope of these maps depends upon vertical dis-
placement from the ends. For a fixed E > 0, define the middle E-portion of f to be tlat
part extending from (f-(E), ) to (f-'(1 - E). 1 - e). If f is matched at any point of this

S,- middle portion by a hyperbola h then by lemma 2. h will extend out the top and bottom
of the unit square. By a horizontal dilation and translation this hyperbola can be broiight
into the class g. Thus the minimal slope and maximal distor~ion that f E F could have

• in the middle e-portion will be attained by a hyperbolae in Q.
It is a straightforward to calculate the minimal slope and maximal distortion over the

middle E-portion of branches in g. These are therefore bounds for the class F as well.
More precisely, we have the following lemmas.

Lemma 3 For g E G and -L > e > 0, if e < g(x) < I- e then dis(g)(x) < 2 and

g'(x) > 4 E(1 - 6)

proof The class can be parametrized by location of the vertical asymptote: 9 -

-) ) - k--<o.,k>,. It is readily calculated that

(y - k) 2  1
g(g(y))-k(k and dis(gk)(g,( y)) -

Minimizing and maximizing these functions over 6 < y < 1 - , k < 0, k > 1 yields the
S lemma.

Lemma 4 For f E F'and L > e > O, if e < f(x) < I-e then f'(x) > 4E(1 -)2

proof Let g be the hyperbola through the points (0, 0), (x. f(x)) and (1 1). Then !Ie
vertical asymptote of g lies outside the interval [0, 11 making g E g. By corollary 3.

f(x) > g'(x), hence f'(x) > 4(1 -)

end of proof

Lemma 5 For f ETand > >0, ifc< f(a)< 1-E thendis(f)(a)< .

'.5

0'
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proof Let b f f(a), and let h be the hyperbola that matches f at the point (a, b). ByV

lemma 2. 0 < h-'(0) < h'1(1) < 1. Then h(x) = h(h-'(0) + x(h-'(1) - h-'(0))) E .
By the composition rule for distortion,

(di~h)h'())2/c 2%dzs(f)(a) =~~'h-() <-
h'(1) -h'(O) h- 1(1) -'(O)

m%

end of proof

IV. An Illustrative Theorem
The following theorem addresses the same type of maps as the Folklore theorem:

transformations on an interval consisting of monotone branches mapping across the inter-
val. The assumptions of bounded distortion and expansion are replaced by the assumption

of a negative Schwarzian. The conclusion is that either there is a sigma-finite absolutely
continuous ergodic invariant measure, or there is a universal attractor consisting of one or

* -both endpoints of the interval.

The simplest form of attraction at the endpoints is if one or both are attracting
fixed points, or together they form an attracting periodic orbit. If there are infinitely

many branches near an endpoint a more complex form of attraction is possible, in which
a majority of points near an endpoint are mapped closer to the endpoint. In this case.
any neighborhood of the endpoint is mapped across the interval, but most points near the

' endpoint will tend to drift closer to the endpoint as they are iterated.

If there are a finite number of branches near the endpoints, then each endpoint is
%". either a fixed point, a preimage of a fixed point, or part of a periodic orbit of period two

and one need only check stability at these points to determine the dynamics of the map.

Theorem Let I be an interval, f E C'(I), f : I I and assume I can be written
as a disjoint union of intervals, I =J JEJ7J, with f :j I for each J E J and

*@ ((x : f'(x)i = 1) = 0. If S(f) < o then either (a) V' > 0,1 - a.e. x E INVn >
N, ff(x) E (0. e)U(1 - e, 1) or (b) there exists a sigma-finite ergodic invariant measure

for f which is absolutley continuous with respect to Lebesgue measure.

Working with this type of map is simpler with the assumption that the intervals I

and J C- J are closed. This means that many of the endpoints of intervals J E J will have
two images. Since we are concerned with positive Lebesgue measure phenomenon this will

not lead to any difficulties. The following definitions and lemmas will ease the proof of theL theorem.

If f : I I and n(x) is a positive integer valued function on I then fT"'(x) is called
W a stopping time map with stopping rule n(x).

6
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Definition For f • I - I and E C I the first return map fE mapping a subset of E to

E is defiied as fE() = f'"')(X) where n(x) = min{n : f"(x) E El. This transformation

is well defined if n(x) is finite for C-a.e. point x E E

The following is well known. The reader is refered to the work of Rohklin [7] for

discusion and proof.

Lemma 6 If f : 1 -4 I and E C I is such that fE has a finite invariant ergodic measure.

then f has a sigma-finite invariant measure. Either both are absolutely continuous or both

are singular with respect to Lebesgue measure.

Definition For f : I '-+ I and P.Q partitions of I, f is said to be Markov from P to
if P refines Q and f maps each element of P monotonely onto some union of elements in
Q. If f is Markov from P to P it is said to be Markov on P

L•-: The proof of the following lemma is left to the reader.

Lemma 7 Let f: I - I be Markov from P to Q and let E C I be a union of elements
* .-i. in Q. If the first return map fE is well defined then it is Markov from E nl P to E l Q.

The following lemma is subsumed in the proofs of Pianigiani and Yorke [6]. An
independent proof is given here for clarity.

Lemma 8 If F is a collection of disjoint intervals in I with (I -U JETJ.) > 0 and
f:U EJ - Isuchthat VJ F. f : J i-i--l ° Iand for some D < o. dis(f") < D

wherever f" is defined, then for -a.e. x E I, 3n > 0 such that ff(X) E I -.J J rJ

-proof Let -y = I -U J-J. For x and y in the domain of a single monotone branch

of f. ,j--J < (refer to the proof of the Folklore theorem). Therefore C(f-)) >
D (-D ). ((U JE)"J). Now f 2 = f o f satisfies the same hypothesis as f with a new union

of disjoint intervals U J'Er'J' =UJEFJ - f-() and y' = I -U J'EP'J' = U ( -

with ((-t') > (1 + e-DC(U IErJ • Y'(). The lemma follows by induction: ((f-l(-)) <

[e.. (1 - -

end of proof

The idea to proving the theorem is straightforward: a dichotomy is established be-
tween attraction at the en(tpoints and the existence of a stopping time map that satisfies
the hypothesis of the Folklore theorem. Rohklin's theorem gives a sigma-finite invariant

measure for the original transforination from the invariant measure of the stopping time
map. The details of the proof involve accounting for all possible behavior at the endpoints.

.@" | *'4.-
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proof of theorem If the endpoints of I form a period two orbit, then replace the map
f with the map f 2 . Then either there are an infinite number of branches at an endpoint.
or the endpoint is a repelling fixed point, an attracting fixed point, or a preimage of the
other endpoint which is fixed. Let p be an endpoint that is not a preimage of the other
endpoint. The monotone sequence ak --+ p and integers Uk are defined as follows.

If p is a repelling fixed point, let the interval [p, r] be the domain of the branch of f

at p. Then there is a unique monotone sequence ak -+ p in [p, r] such that a0 = r and
f(ak) = ak. 1 for k = 1,.... Let uk = k fork =0,1 ...

". If p is an attracting fixed point, let the interval [p, r] be the domain of attraction.
Then r is a repelling fixed point. Let a0 be any point in the interior of [p, r], and let
ak fk(ao). Then ak - p monotonely. Let Uk = 1 for k = 0,1.

If there are an infinite number of branches near p then let ak be any monotone sequence
approaching p such that each ak lies at the endpoint of the domain of a monotone branch

of f. Let Uk = 1 for k = 0, 1,.

Let q be the other endpoint. If q does not map to p then define the monotone sequence
4 bk --+ q and the integers Ck using the same criteria and definitions as above for p. ak. and

Sk. If f(q) = p let [r, q] be the domain of the branch of f at q, let bk --+ q be the monotone
sequence in [r,q] such that f(bk) = ak for k = 0, 1,..., and let Vk = Uk for k = 0, 1.

Let T be the partition consisting of the intervals of monotonicity of f and let Qk be
the partition {(ak,. bk), (a,, aj+i), (bi, bi+l), i = k, k + 1 ... }. Let Wk = max{uk, tk}. Then

by the above construction, fU'k is markov from P V Qk to Qk for any k > 0. For any k > 0
it then follows from lemma 7 that f(ak,b,) consists of monotone branches mapping onto the
interval (ak, bk).

If for some k > 0 there is a set 7y C [ak.bkj] with £(y) > 0 such that f"(-,) C
[p. ak ] U[bk, q] for all n then by lemma 8, for e-a.e. point x E [ak, bk] there exists .V such

that ffl(X) E [p, a kU[bk qj for all n > Y.

7. If such a / exists for all k > 0 then for any E > 0 and C-a.e x E I there exists N such
that f"(x) E [0, 6]U[1 - E, 1] for all n > N.

Otherwise. there will exist a k such that f[a,,b] is defined for C-a.e x E [ak.bk]. For

such a k. let I = f(a,b ) so that f [ak, bk] I [ak, bk]. For any n > 1. every branch of

f " is a middle portion of some branch of f" for some n. With 6 = min{p - (k. q - b1k} it

follows that dis(f") < 1- for all n > 1.
The proof that f possesses a finite invariant measure which is absolutely continuous

with respect to Lebesgue measure proceeds as in the Folklore theorem: n if in

bounded by .L and hence any weak limit it of L Z-- Co1' is invariantf f and absolutly%

continuous with respect to Lebesgue measure.

To prove ergodicity it is necessary to show that the partition F of [ak. 14] fo'red Lv
intervals of monotonicity of f is a generating partition for f. It follows from the above

% %
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that f has no attracting fixed points or orbits (otherwise /_ would have a singularity).

Suppose F does not generate and let J be the maximal open interval in V,=0 f(). If
f"(J) = f nJ) for some n € m then f"(J) would have to contain an attracting periodic

orbit. If f"l(J)nf 111(J) # 0 but f"(J) 0 f..(J) then J was not maximal. Then f"(.1) must

all be disjoint, and therefore increasingly small. This would force p to have a singularity.

Hence no such J exists and F generates.

The proof of ergodicity again proceeds the same as in the Folklore Theorem. If

(E) > 0 then for all e > 0. there is some n and some J E V_= f'(.F) such that (J- < E.

Then Q(f/(E)) > 1 - Hence ,u is ergodic.
Then f., and hence f, possesses a sigma-finite invariant ergodic measure which is

i' absolutely continuous with respect to Lebesgue measure.

end of proof

Appendix

Adler's proof that f with invariant measure p given by the Folklore theorem is weakly

O Bernoulli is given. For measurable sets A and B, the measure of .4 relative to B is

((AtB) = n-V(. q B).

The span of a set of partitions V" ji is the partition formed by all intersections

J0 n ,J, n... n J,,-i with Ji E Ji. For a partition J, let Jn = ViOn f-(,). For example.

if 7 is the intervals of monotonicity of f then J, will be the intervals of monotonicity of

fn.

A transformation f is said to be Bernoulli if there is a partition 7 such that Vt.

V-4. B e J., y(f-(.4) n B) = u(A),u(B). Thus as points are iterated under f their first

n locations in the partition J is independent of their next n locations. The isomorphism

theorem due to Ornstien [5] states the two Bernoulli transformations with the same entropy

are isomorphic.

In general it is difficult to exhibit such a partition for a given Bernoulli transformation.
It is easier to demonstrate the following property called weak Bernoullicitv which implies

O Bernoullicity (see [8]).

The transformation f is said to be weakly Bernoulli on the partition j if

"z Imt (. I.4) n B) - it(A)p(B)j -- 0 as in -- c uniformly in 7

A, B E J,

This implies that as points are iterated under f a block of u locations in the partition

" becomes increasingly independent of a second block of n locations as the points are

iterated longer between blocks. To prove weak Bernoullicity it suffices to show that
.. H("11n+)(.A) n B), 1 f(flfl()qBI(f- '+iTf( 4 )flB?) 1 as m ---x

n( .4 )a(B)

uniformly over all n and all .4. B J,.

, ' 9
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-W 1(Vw VV*Y -- W' ru -in -:x W- V- W. % N T-w--J.VW.-W-.--.
V. '.;

We let J, be the partition of intervals over which ff is monotone.

Lemma A V measurable sets A. Vm. n > 0. VJ. ., J +, such that f "(.'11) f"(.1,
7;c such that

-(f-(' ".4)Jl ) - ( "'+")(A)J,) < cL-C(.4)

proof (ff(J,)) < L-. Thus Vx.y E Ji,

(f m )'(x) DL DL - +'
( -c'L-) < (f-'(1

Hence.
(f )'(x) < 1 + c'L-n

(f
m

(y

for some c'. Since fm : f-m'+"n)(. 4 ) n -* 1-1 onto f-"(A) n" f'(Ji) and f(j, ) =f(.
:.... t ilows-, -Lhat

:.. . (f -( -m+,)(A . )J,

1 - c'L- n < C(f(-+nt(.A)lj 2 ) < 1 + c'L- n

Co biin thi W-h ( ),i DL
Cw(A4)-J'- eLI yields the lemma for c 7 6 r-

end of proof

The following is a property of averages.

Lemma B For ai, bi > 0, E ai = Lbi = 1, and an,, numbers Ai, B,.

'7."., -A Bibi < (Sup{. A } - Inf{A,})(1 - In f { -}) + Sup{.4, - B }

proof Z,>b ai -b, = >a bi - ai hence

Z.4,, -ZBib, =E Aa, - bi., +E A, -ZB Bbi

= A,(ai - bi) +( -B,)b

.._-, >h, S p{i.4, }(ai - 6i) - - b,>i, If{A2 }( 6, - aj) + Sup{.4, - B, }

.= ( S~tp{ A,} - ,f{A})7 .,>h, (a, - 1,,) + Sip{ A, - B,}

< (Sap{A,} - -uf{A}) 1 I , ri-},-, Sup{A, -Bi }

end of proof

Definition For a measurable et .4. let

D,,(A) S 1PJ,,a AJa{i?(.4. -" (.4IJ2 )}

'I.- 10
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4.7

Lemma C 3e. c > 0 such that Vk. m. n > 0, n > k.

D,(f("+m)(A)) < (1 - e)Dn+k(f-i l+')(A)) + cL-"4( A

proof For .iJ,. E JT,,, let {Jf be such that J E , k - Ji C J . let {J-} b, su'h that

"J J,+... ,l C J., and let the indices be such that f m ( J): ff' (j'). Then

Df-' n-r")(_4)) = Supj,.jc.j, z ((f-l+m)( A)lJ') " ( J

Dr.(~ r) Q( 21, f
- ~3f~ffl+fl.4 )J2 'j( J'

If DL then- !!J-'- < 1 - e. and it follows from lemmas A and B that
I(J~jJ2 )

n f- + rn)

< SupjJ,J,, {(Supi (f'"- m)(A)lJ 1) - In f, ( f-( " ")( I4 )J)) (1 -

+ fSup -{c(-(n-)((4)IJi) - 0(( +"1l((4JJ )}

< (1 - E)Dfl(f(n+m)(.)) + cL-L((.4)

end of proof

To prove Bernoullicitv. it follows from lemma C that D,,(f-(n+,n)(.4) 0 as
.m _c uniformly over all n, all measurable sets A. Therefore

-(fIn+m)(4 ) -* 0 as rn, --+ y
C.f -(n+,m) (A))

Uniformly over all n, all J E J, and all measurable sets A. If {J'} is the set of interval
components of f-k(J) then

( n +f-( +m+k) (.4) f-k (j)) f(f -(n + + k) (.4)J )

S -( +rn + k)(' )+ )())

uiiforinlv over all n. all J j7,, and all measurable sets A. Taking the limit as " x
vields I f-("+n)(A4 )IJ) I as i n c uniformly over all o. all J E J,, an1 all
m.nasurable .4. Thus fp I is weakly Bernoulli on,

e-.

O,

,.%11
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